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One-, two-, and three-dimensional hydrogen bonds have been f
ingeniously utilized as an organizing force for molecular \ L
building blocks to construct hydrogen-bonded supramolecular
structures. These hydrogen bonds also underlie the formation
of a wide variety of complex biological structurés.The
versatility of the biological structures can be exemplified by
simple polyamide chains. For example, aliphatic polyamides
(nylons) always form a parallel sheet structure stabilized by two-
dimensional hydrogen bondsyhereas polyglycine (nylon 2)
can adopt a hexagonal array (polyglycine Il) where hydrogen
bonds are formed in three directions at 120Thus, the glycine
residues induce a helical structure in polyamides to form three-
dimensional hydrogen-bond networksWe have recently
demonstrated the formation of well-defined vesicle-encapsulated
microtube$ from oligoglycine-based bolaamphiphiles. Our

ol x - i
5 pmA f Lo \ 5 pim
> y AW ,

Figure 1. (a) Needle-like microcrystals df(denoted by arrows) sitting

on the outer surface of the microtubes, observed using phase-contrast
light microscopy (at 28C in water, pH= 7.5). (b) A single crystal of

1 (denoted by arrows) coexisting with microtubes (gtb.4), which

was obtained by precisely controlled protonation using the vapor
diffusion method.

dimethylsulfoxide and hot dimethylformamide. In analogy with
usual fatty acids, the aggregation behaviorloin water is
largely influenced by the ionization state of the carboxyl
groups!~13 In particular, the uncharged species was found to
be hardly soluble in water, whereas the fully ionized species

strategy of the molecular building blocks is based on the use of V&S freely soluble. The critical micelle concentration (cmc) of

multiple hydrogen-bonded networks provided by sugar and (€ sodium salt in pure water is50 mM at 20°C when
peptide moietieZ® Interestingly, these peptide bolaam- measured by a surface tension method. When the 10 mM

phiphiles give several kinds of molecular assemblies in equi- @quéous solution (sodium salt, pH ~8) was aged at room
librium in water, including tubes, vesicles, and crystals. The teémperature for 23 weeks, swarms of fibrous assemblies can
formation was found to be largely influenced by the ionization €Vidently be seef. Using dark-field light microscopy, we found
state of the two terminal carboxyl groups. In the present paper, many needle-like microcrystals with a length 6f 20 um and
we describe critically pH-dependent crystal formation and the & width of ca. 0.0um (Figure 1a), growing outward from the
first noncovalent formation of polyglycine Il-type structure by —outer surface of the microtubes.

glycylglycine bolaamphiphilel.10 To investigate the effect of pH on crystallization, we evaluated
the degree of ionizatiom of 1 using pH titration at room
Ho LE\“/\/\/\/\/\)O;\ E\/?k temperaturé®1> Thea value increases in a sigmoidal fashion
fz I E/\Ig OH with increasing the pH value of the solution. Similar behavior

is observed for agueous solutions of fatty atldsnd amino

acid surfactant® The pH value of the bulk agqueous environ-
ment was around 7.5, at which we found both the microtubes
and needle-like crystals. This suggests that the local decrease
in pH at highly charged surfac&s6 plays a dominant role in
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Figure 2. A linear alignment of polymolecular chains Invia intermolecular hydrogen bonds between two carboxylic acids. The hydrogen bonds

are partly omitted for clarity.

are identical along the axis. The main feature is a center of
symmetry in the middle of the decamethylene segment. Thus,

the glycine residues at each end have the same dihedral angles

with opposite signs. The -GHCH,—CO- segment adopts a
folded conformation (TG), which remarkably differs from the
usual zigzag conformation observed in linear amidesA
rotation of nearly 120is observed between the amide=O
directions, which is characteristic for polyglycine“ll.The
torsion angles around the glycine residugs< 70.C and¢ =
—149.7) are also consistent with those of polyglycine in its
form Il. Furthermore, the molecules form a linear polymolecular
chain via intermolecular bidentate hydrogen bonds between
carboxylic acids (Figure 2P It is well documented that
the one dimensional, self-complementary hydrogen-bonded
arrays can combine orthogonally to form two-dimensional
B-networks?®-2% In contrast, the present molecular lattice is
pseudohexagonal, with similar interchain distances along the
b, [110], and [1D] directions (4.87, 4.99, and 4.99 A,
respectively). To the best of our knowledge, this finding
provides the first example of polyglycine IlI-type structure made
of noncovalent polymolecular chaifs.

In addition to the four hydrogen bonds involving two terminal
carboxyl functionalities, each molecule forms eight hydrogen
bonds: four in the [010] direction involving the dicarboxamide
carbonyls and two in each of thel[d] and [110] directions.

Figure 3. A hexagonal lattice of the polymolecular chains in
stabilized by three-dimensional hydrogen-bonded networks. The non-
planar (out of the carbonyl plane) hydrogen bonds are denoted by bold

Among these three directions, the dicarboxamide hydrogen-bondlines @), while the linear hydrogen bonds dashed lings. (

chains are running in antiparallel fashion with translation nibtif.
On the other hand, the side arm amide functionalities form
unusual nonplanar (out of the carbonyl plane) hydrogen bonds
(Figure 3). This nonplanar hydrogen bonding allows the central
molecule to bond to different pairs of neighboring molecules,
each related by a glide plane. Thus, all six of the close-packed
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neighbors are linked by hydrogen bonds. It is the nonplanar
nature of the hydrogen bonds that makes the hexagonal
environment possible. This situation is distinct from the linear
amide hydrogen bonds to the same pair of neighboring
molecules found for the similar oxalamide compodadThis
means that hydrogen bonds are formed to only four of the six
close-packed neighbors in a hexagonal lattice. The use of
multiple and directional hydrogen bonds in the glycine residues
will provide a molecular building block with the requisite
molecular orientation in the solid state.
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